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ABSTRACT To enable an in-depth survey of the metabolic potential of complex soil
microbiomes, we performed ultra-deep metagenome sequencing, collecting �1 Tb
of sequence data from three grassland soils representing different precipitation re-
gimes.

As part of the Pacific Northwest National Laboratory (PNNL) Science Focus Area
program (1, 2), we are investigating the impact of environmental change on

microbial community function in grassland soils. Three grassland soils, representing
different moisture regimes, were selected for ultra-deep metagenome sequencing,
resulting in �1 Tb of sequence data per location. This data set serves as a resource for
deep analysis of soil microbiome composition and metabolic potential.

Soils were collected from three grassland field site locations. Arid regime soil (irri-
gated agriculture), characterized as a coarse silty loam, was collected from the Wash-
ington State University Irrigated Agriculture Research and Extension Center (IAREC)
(46.25N, 119.73W). Intermediate precipitation regime soil (rain-fed and irrigated agricul-
ture), characterized as a fine clay loam, was collected from the Konza Prairie Biological
Station (KPBS) (39.10N, 96.61W) (3, 4). Frequent precipitation regime soil (rain-fed and
tile-drained agriculture), characterized as a fine silty clay loam, was collected from the Iowa
State University Comparison of Biofuel Systems (COBS) (41.92N, 93.75W) (5).

Surface soil samples (2 cm by 0 to 20 cm) were collected from three randomly
selected field site block locations using a push corer (3 subsamples per block, 3
replicates per subsample). Replicate subsamples were sieved together, resulting in 9
independent samples per site. Samples were flash frozen and stored at �80°C until
further processing.

DNA was extracted from 3 � 0.25 g soil for each of the 9 field samples per site using
the PowerSoil DNA extraction kit (Qiagen), with bead beating, and quantified. The
extracted DNA samples from each site were combined to generate a pooled sample
from each location (IAREC, COBS, and KPBS) for sequencing. Metagenomic libraries
were prepared using the TruSeq PCR-free kit (Illumina) and a starting material of 1 �g
DNA from the pooled DNA. Sequencing was performed on an Illumina HiSeq X system
at Fulgent Genetics (Los Angeles, CA), generating 150-nucleotide paired-end reads to
a final effort of at least 1 Tb of sequence per site (Table 1). BBDuk (BBTools package
v38.38) (6) was used to trim adapter sequences from raw reads (adapters_no_trans-
posase database), to perform quality filtering (parameters: int, ow; k, 27; hdist, 1; qtrim,
f; minlen, 35), and to remove contaminants (sequencing_artifacts and phix174_ill ref-
erence database). Assembly was performed using the metaHipMer assembler (see
MIMS metadata files for the specific developmental version used for each site) with
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kmer lengths of 21, 31, 55, and 71 (7) on the NERSC Cori platform (https://docs.nersc
.gov/systems/cori). Scaffolds �2,500 bp long were omitted from further analysis.
Quality-screened reads were mapped to scaffolds using the Burrows-Wheeler Aligner
(v0.7.12) (8), and depth of coverage was determined across each scaffold using SAM-
tools (v1.9) (9).

Prodigal (v2.6.3) (10) was used to predict coding regions. Predicted protein se-
quences were searched using hmmsearch (v.3.1b2) (11) against the eggNOG (v4.5) (12),
Pfam (v32.0) (13), and Nucleo-Cytoplasmic Virus Orthologous Group (NCVOG) (release
date, 9 June 2014) (14) databases. Annotation assignments were given based on best
bit scores (E-value cutoff, 1.0e�05).

These metagenomes are intended as a resource for the scientific community and
should facilitate understanding of the highly diverse and complex metabolic potential
that is encoded in soil microbial genomes.

Data availability. Metagenomic sequence data have been deposited in the PNNL
DataHub repository and are available for download under project doi numbers WA-
TmG.1.0, KS-TmG.1.0, and IA-TmG.1.0. The versions described in this paper are the first
versions. Packages contain raw reads, assemblies, functional annotations, field site plot
maps, MIMS.me.soil.5.0 metadata information, and package “read me” files.
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