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ABSTRACT The moderate halophile Alkalicoccus halolimnae BZ-SZ-XJ29T grows opti-
mally in a relative broad range of 8.3% to 12.3% (wt/vol) NaCl. The draft genome
consists of approximately 3.66 Mb and contains 3,534 putative genes. Various genes
involved in osmotic stress were predicted, providing pertinent insights into specific
adaptations to the hypersaline environment.

The mesophilic moderately halophilic bacterium Alkalicoccus halolimnae BZ-SZ-XJ29T

was aerobically isolated from a mixture of water and sediment from a salt lake in
Xinjiang Uyghur Autonomous Region, China (1). Its growth occurs in the ranges of 4.3%
to 24.3% (wt/vol) NaCl, pH 6.0 to 10.5, and 5°C to 41°C. To gain insight into the osmotic
adaptive strategies of hypersaline stress, the draft genome of strain BZ-SZ-XJ29T was
sequenced using an Illumina HiSeq 4000 platform.

Total genomic DNA (2 �g) was extracted from strain BZ-SZ-XJ29T grown under
optimal conditions, as described previously (1), using a microbial DNA isolation kit
(iTOP, Beijing, China) following the manufacturer’s instructions. A library for genome
sequencing was constructed using the whole-genome shotgun approach with the
TruSeq DNA sample preparation kit (Illumina, USA), HiSeq PE cluster kit v4-cBot
(Illumina), and HiSeq 3000/4000 SBS kit (Illumina) (2, 3). Sequencing was performed
with a paired-end read length of 2 � 150 bp at approximately 200� coverage. The
filtered reads were quality trimmed using Quake and the Burrows-Wheeler Aligner
(BWA) with the default program parameters and were de novo assembled into contigs
using SOAPdenovo2 (4). A total of 5,027,473 reads with a total length of 3,668,659 bp
were assembled into 59 contigs, with a GC content of 44.9% and an N50 value of
241,109 bp. Automatic annotation was performed using the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) (https://www.ncbi.nlm.nih.gov/genome/annotation_prok).
Subsequently, the genome files were uploaded to the IMG-ER tool (https://img.jgi.doe
.gov/cgi-bin/submit/main.cgi) for functional annotation. Among the 3,534 genes iden-
tified, 3,435 were potential protein-coding genes. Also predicted were 55 RNAs, includ-
ing 4 rRNAs (2 5S RNAs, 1 16S RNA, and 1 23S RNA), 45 tRNAs, and 6 other RNAs.

Genome sequence analysis showed the presence of a number of genes encoding
putative proteins potentially related to the osmotic strategies for surviving in a hyper-
saline environment. Identified were one gene cluster (ectA, ectB, and ectC) for ectoine
biosynthesis from aspartate semialdehyde, the betA gene and betB gene for glycine
betaine biosynthesis from choline, the glnA gene for L-glutamine biosynthesis from
L-glutamate, the proV gene and proW gene for the glycine betaine/proline ABC trans-
porter, the opuAC and opuBD genes for the osmoprotectant (i.e., choline, glycine
betaine, and proline) transport system (ABC transporters), and the opuD gene for
glycine betaine/proline transporters (betaine/carnitine/choline transporter [BCCT] fam-
ily). All genes mentioned are important for maintaining osmotic balance though the
“compatible solutes strategy” under high-salt conditions. Furthermore, four genes
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coding for Na�/solute symporters (5–8), nine genes coding for the multisubunit
Na�/H� antiporter (9, 10), and three genes coding for a monovalent cation/proton
antiporter (11) were predicted. These genes might be involved in salt stress by
maintaining Na� homeostasis. Also detected were four genes (three TrkA type and one
TrkH type) responsible for K� uptake systems, implying that strain BZ-SZ-XJ29T may
gain rapidly isosmotic cytoplasm though K� as an osmolyte when coping with osmotic
shock (12). As described above, many predicted genes in the genome of strain
BZ-SZ-XJ29T offer valuable insights to reveal the adaptive mechanisms for maintaining
osmotic balance and Na� homeostasis under conditions of elevated salinity.

Data availability. The draft genome sequence of Alkalicoccus halolimnae BZ-SZ-

XJ29T has been deposited at GenBank under the accession number VPFE00000000. The
raw sequencing reads have been submitted to the Sequence Read Archive (SRA
accession number SRR9943993) and are available at NCBI under BioProject number
PRJNA559242 and BioSample number SAMN12530361.
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