Draft Genome Sequence of the Astaxanthin-Producing Microalga *Haematococcus lacustris* Strain NIES-144

Daichi Morimoto,* Takashi Yoshida,* Shigeki Sawayama*

*Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan

**ABSTRACT** *Haematococcus lacustris* is an industrially important eukaryotic microalga that is thought to be a great source of natural astaxanthin with strong antioxidant activity. Here, we report the draft assembly and annotation results of the genome of *H. lacustris* NIES-144. These data will expand our knowledge of the molecular biological features of this microalga.

*Haematococcus* is a genus of eukaryotic *Chlorophyceae* microalgae that can form a red immotile cyst and accumulate the highest content of natural astaxanthin reported to date under stress conditions (1). Although these microalgae have been studied as a natural resource for astaxanthin, which is a high-value carotenoid with strong antioxidant activity (2), the genomic information is limited to *H. lacustris* strain SAG192.80 (3). To expand our molecular biological knowledge of these industrially important microalgae, we determined the draft genome sequence of *H. lacustris* NIES-144, which was obtained from the Natural Institute for Environmental Studies (NIES, Japan). *H. lacustris* NIES-144 was cultured in C medium (4) under 14/10-h light/dark photocycles at 25°C. Extraction of genomic DNA from *Haematococcus* cells was performed using a FastDNA Spin kit for soil (MP Biomedical, USA). Paired-end and mate pair libraries (3 kb and 10 kb, respectively) were prepared using a combination of the Covaris (USA) sonicator and the TruSeq DNA LT sample prep kit or the Nextera mate pair preparation kit (Illumina), respectively. The paired-end library was sequenced using the TruSeq rapid sequencing by synthesis (SBS) kit on the Illumina HiSeq 2500, while the mate pair library was sequenced using the TruSeq SBS kit v3 on the Illumina HiSeq 2500 platform.

The mate pair reads (average, 154,807,864 reads) were processed with cutadapt 1.2.1 (5) to remove adapter sequences. The paired-end reads (215,289,986 reads) and trimmed mate pair reads (average, 105,701,143 reads) were assembled into 9,693 scaffolds with a total length of 172 Mb (genome coverage, 186×; GC content, 58.4%; N50 scaffold length, 38,941 bp) using ALLPATHS-LG R45226 (6) with the following parameters: GENOME SIZE: 125,000,000; FRAG COVERAGE: 100; JUMP COVERAGE: 100; and HAPLOIDIFY: True. The completeness of the draft genome was 57.7% based on the Benchmarking Universal Single-Copy Orthologs (BUSCO) software v3.1.0 (eukaryota_odb9 database) (7). Prior to gene structure prediction, the repeat sequences of the *H. lacustris* NIES-144 genome were identified and masked by RepeatMasker v4.0.9 (8) with default parameters. The gene structure of the masked *Haematococcus* genome was predicted by using MAKER v2.31.10 (9) in collaboration with AUGUSTUS v4.0.9 (8) with default parameters. The gene structure of the masked *Haematococcus* genome was predicted by using MAKER v2.31.10 (9) in collaboration with AUGUSTUS 3.3.2 (10), SNAP v2006-07-28 (11), and GeneMark-ES 4.3.0 (12) (model parameters, *Chlamydomonas*, *Arabidopsis thaliana*, and *Chlamydomonas reinhardtii*, respectively). For RNA and protein homology evidence in the MAKER prediction, we also recruited the transcriptome data of *H. lacustris* NIES-144 (SRA accession number SRX3729494) (13) and the protein sequences of representative eukaryotic species, including *H. lacustris* strain SAG192.80.
A total of 13,309 genes were functionally annotated for *H. lacusutris* NIES-144 by BLASTp analysis against the UniProtKB SWISS-PROT and TrEMBL databases (14) with E value thresholds of \(<1.0 \times 10^{-5}\) and InterProScan v5.36-75.0 (15) analysis against the Pfam database (16). Also, 277 tRNAs were predicted using tRNAscan-SE v2.0 (17). This genome will provide the prerequisite information for genetic engineering and spur the further development of efficient astaxanthin production by this microalga.

**Data availability.** This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under BioProject number PRJDB8952 (BioSample number SAMD00192397). This version of the project has the accession number BLLF00000000 and consists of sequences deposited under the accession numbers BLLF01000001 to BLLF01009693. The raw reads can be accessed under the SRA accession number DRP005830.

**ACKNOWLEDGMENTS**

We thank Ayano Nakatani for technical assistance. Genome sequencing and assembly were conducted at Dragon Genomics Center, TaKaRa Bio, Inc. (Otsu, Japan). The computational analysis in this study was performed using the Super Computer System at the Institute for Chemical Research, Kyoto University.

We declare that this research was conducted in the absence of any commercial or financial relationships.

**REFERENCES**


