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ABSTRACT Lactobacillus plantarum CRL681 was isolated from Argentinean artisanal
fermented sausages. Here, the draft genome sequence of the CRL681 strain is de-
scribed. The reads were assembled into contigs with a total estimated size of
3,370,224 bp. A total of 3,300 open reading frames (ORFs) were predicted, including
3,126 protein-coding sequences. The draft genome sequence of L. plantarum CRL681
will be useful for understanding the organism’s metabolic activities and for biotech-
nological applications.

Lactobacillus plantarum CRL681, a strain originally isolated from an artisanal Argen-
tinean fermented sausage, has an efficient acidogenic activity that guarantees safety

and texture development during ripening of fermented sausages (1–7). The CRL681
strain possesses different aminopeptidases, and it has been demonstrated to have the
ability to contribute to meat protein degradation by promoting the activity of muscle
proteolytic enzymes (2, 3, 5, 8). Detailed peptidomic studies confirmed its peptidogenic
ability and its capacity to increase free amino acid contents when inoculated into raw
meat or fermented-meat models (6, 8, 9). On the other hand, L. plantarum CRL681 is
capable of degrading biogenic amines in vitro and lacks the ability to produce them
from amino acids, indicating the absence of amino oxidase and amino decarboxylase
activities, respectively (4). In addition, the CRL681 strain has remarkable bioprotective
potential due to the high inhibitory activity toward Escherichia coli O157:H7 (10).

L. plantarum CRL681 was grown for 12 h at 30°C (final log phase) in Man-Rogosa-
Sharpe (MRS) agar (Oxoid, Cambridge, UK). A single colony was picked for DNA
isolation. Library preparation was performed using a Nextera XT DNA library prep kit
following the manufacturer’s protocol. Briefly, 1 ng of DNA (5 �l of the sample normal-
ized to 0.2 ng/�l) was submitted to enzymatic fragmentation by transposons and end
labeling, followed by adapter ligation, amplification, and purification of DNA fragments.
The L. plantarum CRL681 genomic DNA was sequenced with the 2 � 150-bp paired-end
read length sequencing protocol of the Illumina MiSeq platform. The quality of the
reads was controlled using FastQC (11), and the generated sequencing reads were
filtered to remove low-quality reads using Prinseq (12) with the following parameters:
Min_len, 150; Trim_left, 15; Trim_right, 10; and Min_qual_mean, 25. SPAdes v3.11.1 (13)
was used for de novo assembly with an N50 value of 449,362 bp. The sequencing
protocol generated 191� mean coverage of the genome. The CRL681 draft genome
sequence contains 28 contigs with an average GC content of 44.3% and a total
estimated size of 3,370,224 bp.

The Rapid Annotations using Subsystems Technology (RAST) server was used for
functional annotation of predicted genes (14). A total of 3,300 open reading frames

Citation Fadda S, Villena J, Albarracin L,
Saavedra L, Islam MA, Vignolo GM, Kitazawa H,
Hebert EM. 2019. Draft genome sequence of
Lactobacillus plantarum CRL681, isolated from
Argentinean artisanal fermented sausages.
Microbiol Resour Announc 8:e01629-18.
https://doi.org/10.1128/MRA.01629-18.

Editor Irene L. G. Newton, Indiana University,
Bloomington

Copyright © 2019 Fadda et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Haruki Kitazawa,
haruki.kitazawa.c7@tohoku.ac.jp, or Elvira Maria
Hebert, ehebert@cerela.org.ar.

Received 15 December 2018
Accepted 8 March 2019
Published 11 April 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 15 e01629-18 mra.asm.org 1

 on S
eptem

ber 21, 2019 by guest
http://m

ra.asm
.org/

D
ow

nloaded from
 

https://orcid.org/0000-0001-8288-9701
https://doi.org/10.1128/MRA.01629-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:haruki.kitazawa.c7@tohoku.ac.jp
mailto:ehebert@cerela.org.ar
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01629-18&domain=pdf&date_stamp=2019-4-11
https://mra.asm.org
http://mra.asm.org/


(ORFs) were predicted, including 3,126 protein-coding sequences, 61 tRNAs, 17 rRNAs,
and 4 noncoding RNAs (ncRNAs). No clustered regularly interspaced short palindromic
repeats (CRISPRs) were found in the genome by using CRISPRFinder (15). Default
parameters were used in all of the bioinformatic analyses.

Fifteen putative peptidases were detected when the genome of L. plantarum
CRL681 was analyzed by RAST (12) and submitted to the online BLAST search tool on
the MEROPS peptidase database (16), demonstrating the peptidolytic potential of this
strain. Additionally, a choloylglycine hydrolase gene for bile hydrolysis was found in L.
plantarum CRL681 that could be involved in its ability to survive in the gastrointestinal
tract (17). Clusters of genes involved in the biosynthesis of folate and riboflavin were
also found in the CRL681 genome.

The draft genome sequence of L. plantarum CRL681 will be useful for understanding
its metabolic activities and biotechnological applications.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession number QOSF00000000. The version de-
scribed here is QOSF01000000. The SRA/DRA/ERA accession number is ERP111695. The
BioSample and BioProject numbers are SAMN09649875 and PRJNA480792, respectively.
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