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ABSTRACT Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseu-
domonas protegens AS15 from stored rice grains exhibited antifungal activity against
Aspergillus and Penicillium spp. predominant in stored rice. Here, we report their bac-
terial draft genomes, which contain genes related to biotic and abiotic stress man-
agement, as well as antimicrobial and insecticidal traits.

Previously, 460 bacterial strains were isolated from stored rice grains obtained from
rice-processing complexes from 11 different regions in South Korea (1, 2). Among

them, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas
protegens AS15 were selected as potential biocontrol agents (3–5). These bacterial
strains showed significant biocontrol activity against Aspergillus flavus growth and
aflatoxin production as well as the predominant fungi (A. candidus, A. fumigatus,
Penicillium fellutanum, and Penicillium islandicum) in stored rice grains (3–5). Fur-
thermore, B. megaterium KU143 and P. protegens AS15 produced volatile compounds
that could reduce conidial germination and germ tube elongation, as well as mycelial
growth of the predominant fungi (4, 5). Here, we present the draft genome sequences
of these strains, KU143, KU313, and AS15, belonging to different genera and exhibiting
significant biocontrol activity against rice fungal contamination.

Genome sequencing of bacterial strains KU143, KU313, and AS15 was performed
using the Illumina MiSeq platform at the Computational and Synthetic Biology Labo-
ratory, Korea University (Seoul, South Korea). Totals of 336,941, 955,850, and 531,468
paired-end reads (40.3-, 158.3-, and 47.2-fold coverage) for KU143, KU313, and AS15,
respectively, were generated from paired-end sequencing of the genomic library with
an average insert size of 500 bp. Low-quality reads were trimmed with a quality
threshold of Q20, and the trimmed reads were subjected to de novo assembly using the
SPAdes assembler (6). The reads were assembled to 98, 79, and 52 scaffolds for KU143,
KU313, and AS15, respectively, with total lengths and G�C contents as shown in Table 1.
The maximum lengths and N50 values of the contigs were 542,591 and 192,911 bp for
KU143, 768,312 and 756,039 bp for KU313, and 1,020,915 and 290,736 bp for AS15,
respectively. The genomes were annotated with the NCBI Prokaryotic Genome Anno-
tation Pipeline (PGAP). The 4,995, 3,298, and 6,040 coding sequences of KU143, KU313,
and AS15 showed 48.94, 29.46, and 60.18% sequence similarities to known genes in the
NCBI database, respectively. In addition, retrieved numbers of tRNA, 5S rRNA, 16S rRNA,
and 23S rRNA sequences of the strains are shown in Table 1.

In general, the genomes of B. megaterium KU143, M. testaceum KU313, and P.
protegens AS15 contain genes related to biocontrol traits (i.e., siderophore, polyketide,
phosphate solubilization, motility, and biofilm formation) that may be significant
factors in the host colonization and protection against pathogenic infections (7–10).
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Additionally, biotic and abiotic stress management genes (i.e., superoxide dismutase
and catalase) were found in all the examined bacterial strains (11, 12). In particular, the
genome of strain AS15 has several genes related to antimicrobial or insecticidal
compounds (i.e., hydrogen cyanide synthase, ATP-dependent zinc metalloprotease, and
chitinase) (13–15). Therefore, the genomes of these bacterial strains belonging to
different genera may help to increase our understanding of the characteristics of their
biocontrol of fungal contamination in stored rice grains.

Accession number(s). This whole-genome shotgun project has been deposited in

DDBJ/EMBL/GenBank under the accession and version numbers listed in Table 1.
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TABLE 1 Summary of genome sequencing and GenBank accession and version numbers of B. megaterium KU143, M. testaceum KU313,
and P. protegens AS15

Bacterial strain
Genome
size (bp)

G�C
content (%)

No. of coding
sequences

No. of
tRNAs

No. of rRNAs

GenBank accession no. Version no.5S 16S 23S

B. megaterium KU143 5,022,643 38.04 4,995 102 15 22 20 POTF00000000 POTF01000000
M. testaceum KU313 3,623,185 69.51 3,298 46 4 1 2 PPEE00000000 PPEE01000000
P. protegens AS15 6,756,833 63.52 6,040 60 7 1 1 PPEF00000000 PPEF01000000
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