Draft Genome Sequence of *Shewanella baltica* M1 Isolated from Brackish Surface Water of the Gulf of Gdańsk

Joanna Karczewska-Golec,a Dominik Strapagiel,b Marta Sadowska,a Agnieszka Szałewska-Pałasz,a Piotr Golec,a

Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, Biobank Laboratory, University of Łódź, Łódź, Poland;

Here, we present the 5.168-Mbp draft genome sequence of *Shewanella baltica* M1, the first *Shewanella* strain from the Gulf of Gdańsk to have its genome sequenced and annotated. The availability of the genome sequence of strain M1 will promote further global analyses of bacterial stress responses in the unique Gulf of Gdańsk ecosystem.

Shewanella baltica M1 was isolated in summer 2005 from surface water of the Gulf of Gdańsk (54°33′01.06″N, 18°39′45.50″E), a southeastern bay of the Baltic Sea. Water in this unique basin is subject to substantial hydrological and hydrochemical variability, which results from large anthropogenic impact, dynamic interactions of marine and fresh water, and the morphometry of the Gulf of Gdańsk itself (1). For instance, while the average surface salinity of the Gulf of Gdańsk is about 7 PSU, it periodically drops to around 1 PSU in nearshore waters (2). These varied natural and anthropogenic impacts affect the functioning of the unique Gulf of Gdańsk ecosystem (3).

The genus *Shewanella* comprises a phenotypically diverse group of bacteria with a worldwide distribution (4). *S. baltica* strains occupy primarily aquatic and sedimentary niches that are chemically stratified on a permanent or seasonal basis (5). They also respond to the niche-specific resources, or equal to Q20. Genome assembly was performed using SPAdes version 3.7.1 (8), combing de novo assembly and manual editing. The final assembly consisted of 91 contigs (>500 bp) totaling 5,167,578 bp, with a GC content of 46.16 mol% and an average genome coverage of 34X. The N50 and N75 contig lengths were 143,280 bp and 76,941 bp, respectively.

The closest whole-genome sequences are those of *S. baltica* OS625 (85.84% symmetrical identity and 96.75% gapped identity) and *S. baltica* OS185 (84.94% symmetrical identity and 96.78% gapped identity) (9) among the draft and the complete genome sequences, respectively, in NCBI.

The draft genome of strain M1 was annotated using the Prokaryotic Genome Annotation Pipeline version 3.1 at NCBI (10). The annotation revealed 4,270 predicted protein-coding sequences, 92 tRNA genes, and 14 rRNA operons. The availability of the genome sequence of *S. baltica* M1 will facilitate further transcriptome- and proteome-centric approaches to explain how versatile *Shewanella* strains functionally interact with their habitats.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number LWED00000000. The version described in this paper is the first version, LWED01000000.

Funding information This work, including the efforts of Agnieszka Szałewska-Pałasz, was funded by National Science Center (Poland) (HARMONIA 2012/06/M/ZN22/00100). This work, including the efforts of Piotr Golec, was funded by the National Center for Research and Development (Poland) (LIDER/006/414/L-4/12/NCBR/2013).

References

