Draft Genome Sequences of *Elizabethkingia meningoseptica*

Stephanie A. Matyi, a Peter R. Hoyt, a Akira Hosoyama, b Atsushi Yamazoe, b Nobuyuki Fujita, b John E. Gustafson a

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA; Biological Resource Center, National Institute of Technology and Evaluation, Tokyo, Japan b

Elizabethkingia meningoseptica is ubiquitous in nature, exhibits a multiple-antibiotic resistance phenotype, and causes rare opportunistic infections. We now report two draft genome sequences of *E. meningoseptica* type strains that were sequenced independently in two laboratories.

The genus *Elizabethkingia* was derived in 2005 following a series of systematic investigations that led to the reclassification of members previously found within the genera Flavobacterium and Chryseobacterium (1–4). Currently, *Elizabethkingia* is represented by the three species *Elizabethkingia miricola* (5), *Elizabethkingia meningoseptica* (6, 7), and *Elizabethkingia anophelis* (8).

E. meningoseptica expresses a multiple-antibiotic resistance phenotype and causes infections primarily within immunocompromised individuals (9–11). The type strain of *E. meningoseptica* was isolated in 1958 in a case of neonatal meningitis (6, 7). We now report the draft genome sequences of two *E. meningoseptica* type strains, NBRC 12535 T and ATCC 13253 T. Both of these culture collection strains are representatives of the original *E. meningoseptica* strain isolated by Elizabeth King and colleagues (6).

The draft genome sequences of NBRC 12535 T and ATCC 13253 T were prepared at the National Institute of Technology and Evaluation, Tokyo, Japan, using Illumina HiSeq 1000 technology and at Oklahoma State University using the Roche 454 GS Junior platform, respectively. Genomic DNA to be sequenced was isolated from overnight cultures (30°C) of NBRC 12535 T grown on nutrient broth. Sequencing of NBRC 12535 T was initiated after DNA-DNA hybridization. Acta Pathol. Microbiol. Immunol. Scand. 95:33–39.

The nucleotide alignment of several highly conserved genes from the *E. meningoseptica* draft genome sequences and *E. anophelis* R26 T (gene and nucleotide identities are as follows: *gln*, 86%; *gyr*B, 87%; *rec*A, 88%; *atp*D, 92%; and *dha*K, 92%) strongly supports previous findings that *E. anophelis* is at least a separate species (8). The 16S rRNA sequences of these two species are 98% identical, which is not very definitive for speciation (13). *E. meningoseptica* is resistant to β-lactam antibiotics due to the production of metallo-β-lactamases (MBLs) and extended-spectrum β-lactamases (ESBLs) (14–16). Two MBL variants (*bla* GOB-17 and *bla*B3) and one ESBL gene (*blaA* CME-1) were found in both *E. meningoseptica* draft genome sequences and were aligned with similar *E. anophelis* genes. A comparison of the β-lactamase orthologs from these two species revealed only 74% to 85% amino acid identity. This finding confirms that *Elizabethkingia* species, which are ubiquitous in nature (17), may act as potential reservoirs of novel β-lactamase genes.

Nucleotide sequence accession numbers. These whole-genome shotgun projects have been deposited at DDBJ/EMBL/GenBank under the accession no. BARD00000000 for NBRC 12535 T and ASAN00000000 for ATCC 13253 T.

ACKNOWLEDGEMENTS

We thank the Japanese Ministry of Economy, Trade and Industry for their support sequencing NBRC 12535 T. We acknowledge prior support from the National Institutes of Health for the sequencing of ATCC 13253 T: SC1GM083882-01 (J.E.G.), R25 GM07667-30 (NMSU-MARC program), S06-GM61222-05 (NMSU-MBRS-RISE program), the National Center for Research Resources (5P20R016480-12), and the National Institute of General Medical Sciences (8P20GM103451) (NM-INBRE program).

REFERENCES

