Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Microbiology Resource Announcements
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • Archive
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MRA
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Microbiology Resource Announcements
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Microbiology Resource Announcements
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • Archive
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MRA
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Genome Sequences

Genome Sequence of Lipopeptide- and Antioxidant-Producing Strain Bacillus velezensis NWUMFkBS10.5

Adetomiwa A. Adeniji, Olubukola O. Babalola
Julie C. Dunning Hotopp, Editor
Adetomiwa A. Adeniji
Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Adetomiwa A. Adeniji
Olubukola O. Babalola
Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Olubukola O. Babalola
Julie C. Dunning Hotopp
University of Maryland School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MRA.00595-19
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Candidate biocontrol agent Bacillus velezensis NWUMFkBS10.5 possesses unique genomic characteristics revealed by antiSMASH analysis and in vitro metabolomic elucidation. Besides its capability to produce antimicrobial lipopeptides, further in silico genome profiling predicted the presence of metabolic pathways for synthesizing antioxidants like lampranthin-2, miraxanthin V, and 2-decarboxybetanidin.

ANNOUNCEMENT

The agroindustrial relevance of Bacillus velezensis species has become prominent in recent years (1–3), and more significantly, several strains producing beneficial lipopeptides with broad antimicrobial properties that could be exploited in planta and biotechnologically have been documented (4–7). With a view to providing an indigenous biocontrol agent against the etiological agents (e.g., Fusarium verticillioides, Fusarium culmorum, and Fusarium graminearum) of fusariosis, a worldwide disease that affects the quality and production of major cereal grains, we report here the draft genome sequence of an anti-Fusarium and antioxidant-producing B. velezensis strain isolated from the maize rhizosphere in the North West region of South Africa (8, 9). A pure culture of isolate NWUMFkBS10.5 was obtained from a distinct colony after 5 g of rhizospheric soil from the maize farm was cultured on HiCrome (Oxoid) selective Bacillus commercial agar plates following the manufacturer’s instructions. The isolate exhibited in vitro antifungal properties against F. graminearum and F. culmorum when grown on potato dextrose agar (Oxoid) (28°C for 7 days), and it produced active secondary metabolites (9).

The genome sequence conditions, protocols, assembly, annotation, data mining, and in silico analysis of this B. velezensis strain (NWUMFkBS10.5) have been previously documented by Adeniji et al. (9). Briefly, genomic DNA of the strain was extracted using the Zymo Research (ZR) soil microbe DNA miniprep genomic isolation kit. Sequencing of the DNA was done with the Illumina MiSeq reagent kit v2 microsystem at MR DNA (Shallowater, TX, USA), using in-house protocols. A Nextera DNA sample preparation kit (Illumina) was used in constructing the library, and thereafter, the Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) assay kit (Life Technologies, Inc.) was used for the final library concentration. Determination of the average library size was done on an Agilent 2100 Bioanalyzer (Agilent Technologies). The library was then pooled and diluted to 12.0 pM, and the paired ends were finally sequenced using a 600-cycle v3 reagent kit (Illumina) with an average coverage of 50×. As previously reported by Adeniji et al. (9), the KBase platform (10) was employed for checking read quality (FastQC v1.0.1), read trimming (Trimmomatic v0.32), and adaptor sequence removal (Cutadapt v1.0.1). The assembly of reads into contigs was carried out on the KBase platform using Assemble with SPAdes v3.13.0. Contigs from KBase were then uploaded to the Rapid Annotations using Subsystems Technology v2.0 (RAST) and SEED Viewer v2.0 servers (11, 12), the PATRIC online server (v3.3.15) (13), and the NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP v4.2) (14) for automated annotation and comparison. Default settings were used for all of the bioinformatics analysis.

From the sequencing results with an average read length of 151 bp, a total of 15,010,234 paired-end reads and 7,505,117 clusters were obtained. The size of the NWUMFkBS10.5 genome and number of contigs were 3,964,473 bp and 37, respectively, with a G+C content of 46.39%. The N50 value of the raw sequences was 195,609 bp, and a total of 3,918 genes were annotated with PGAAP, including 3,701 coding genes, 51 rRNAs, 42 tRNAs, 5 noncoding RNAs (ncRNAs), and 166 pseudogenes. AntiSMASH 4.0.0rc1 (default parameters) (15) was used to predict the biosynthetic clusters (16 clusters) and bioproducts (bacillibactin, bacilysin, fengycin, difficidin, iturin, macrolactin, mersacidin, surfactin, and bacillaene) present in NWUMFkBS10.5. Based on phylogenomic characterization and Kyoto Encyclopedia of Genes and Genomes (KEGG) platform metabolic modeling (KEGG map, default settings), the strain was also reported to possess unique biosynthetic pathways capable of producing biomolecules (lampranthin-2, miraxanthin V, gomphrenin-1, 2-decarboxybetanidin, and celosianin-2) not previously documented for B. velezensis (8). This genome sequence should provide further avenues for the biotechnological manipulation of NWUMFkBS10.5 for possible applications outside agroindustry.

Data availability.This whole-genome shotgun project was deposited at DDBJ/ENA/GenBank under the accession number NZ_NITU01000037 and the assembly accession number GCF_002204665. The version described here is the first version, NZ_NITU01000037.1. The BioProject and BioSample designations for this project are PRJNA388288 and SAMN07174738, respectively.

ACKNOWLEDGMENTS

A.A.A. thanks North-West University for a postdoctoral fellowship. This work is based on research supported by the National Research Foundation, South Africa (UID 95111), under a French/South African bilateral agreement.

FOOTNOTES

    • Received 22 May 2019.
    • Accepted 18 June 2019.
    • Published 11 July 2019.
  • Copyright © 2019 Adeniji and Babalola.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

REFERENCES

  1. 1.↵
    1. Fan B,
    2. Blom J,
    3. Klenk H-P,
    4. Borriss R
    . 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol 8:22. doi:10.3389/fmicb.2017.00022.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Baptista JP,
    2. Sanches PP,
    3. Teixeira GM,
    4. Morey AT,
    5. Tavares ER,
    6. Yamada-Ogatta SF,
    7. da Rocha SPD,
    8. Hungria M,
    9. Ribeiro RA,
    10. Balbi-Peña MI,
    11. Chideroli RT,
    12. Pereira UP,
    13. de Oliveira AG
    . 2018. Complete genome sequence of Bacillus velezensis LABIM40, an effective antagonist of fungal plant pathogens. Genome Announc 6:e00595-18. doi:10.1128/genomeA.00595-18.
    OpenUrlCrossRef
  3. 3.↵
    1. Gao X-Y,
    2. Liu Y,
    3. Miao L-L,
    4. Li E-W,
    5. Sun G-x,
    6. Liu Y,
    7. Liu Z-P
    . 2017. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4. Appl Microbiol Biotechnol 101:3759–3768. doi:10.1007/s00253-017-8095-x.
    OpenUrlCrossRef
  4. 4.↵
    1. Ye M,
    2. Tang X,
    3. Yang R,
    4. Zhang H,
    5. Li F,
    6. Tao F,
    7. Li F,
    8. Wang Z
    . 2018. Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem Biol 13:500–505. doi:10.1021/acschembio.7b00874.
    OpenUrlCrossRef
  5. 5.↵
    1. Yoo Y,
    2. Seo D-H,
    3. Lee H,
    4. Cho E-S,
    5. Song N-E,
    6. Nam TG,
    7. Nam Y-D,
    8. Seo M-J
    . 2019. Inhibitory effect of Bacillus velezensis on biofilm formation by Streptococcus mutans. J Biotechol 298:57–63. doi:10.1016/j.jbiotec.2019.04.009.
    OpenUrlCrossRef
  6. 6.↵
    1. Rehman NU,
    2. Abed RMM,
    3. Hussain H,
    4. Khan HY,
    5. Khan A,
    6. Khan AL,
    7. Ali M,
    8. Al-Nasri A,
    9. Al-Harrasi K,
    10. Al-Rawahi AN,
    11. Wadood A,
    12. Al-Rawahi A,
    13. Al-Harrasi A
    . 2018. Anti-proliferative potential of cyclotetrapeptides from Bacillus velezensis RA5401 and their molecular docking on G-protein-coupled receptors. Microb Pathog 123:419–425. doi:10.1016/j.micpath.2018.07.043.
    OpenUrlCrossRef
  7. 7.↵
    1. Cao Y,
    2. Pi H,
    3. Chandrangsu P,
    4. Li Y,
    5. Wang Y,
    6. Zhou H,
    7. Xiong H,
    8. Helmann JD,
    9. Cai Y
    . 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8:4360. doi:10.1038/s41598-018-22782-z.
    OpenUrlCrossRef
  8. 8.↵
    1. Adeniji AA,
    2. Loots DT,
    3. Babalola OO
    . 2019. Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation. Appl Microbiol Biotechnol 103:3669. doi:10.1007/s00253-019-09710-5.
    OpenUrlCrossRef
  9. 9.↵
    1. Adeniji AA,
    2. Aremu OS,
    3. Babalola OO
    . 2018. Selecting lipopeptide-producing, Fusarium‐suppressing Bacillus spp.: metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5. Microbiologyopen 8:e00742. doi:10.1002/mbo3.742.
    OpenUrlCrossRef
  10. 10.↵
    1. Arkin AP,
    2. Cottingham RW,
    3. Henry CS,
    4. Harris NL,
    5. Stevens RL,
    6. Maslov S,
    7. Dehal P,
    8. Ware D,
    9. Perez F,
    10. Canon S,
    11. Sneddon MW,
    12. Henderson ML,
    13. Riehl WJ,
    14. Murphy-Olson D,
    15. Chan SY,
    16. Kamimura RT,
    17. Kumari S,
    18. Drake MM,
    19. Brettin TS,
    20. Glass EM,
    21. Chivian D,
    22. Gunter D,
    23. Weston DJ,
    24. Allen BH,
    25. Baumohl J,
    26. Best AA,
    27. Bowen B,
    28. Brenner SE,
    29. Bun CC,
    30. Chandonia JM,
    31. Chia JM,
    32. Colasanti R,
    33. Conrad N,
    34. Davis JJ,
    35. Davison BH,
    36. DeJongh M,
    37. Devoid S,
    38. Dietrich E,
    39. Dubchak I,
    40. Edirisinghe JN,
    41. Fang G,
    42. Faria JP,
    43. Frybarger PM,
    44. Gerlach W,
    45. Gerstein M,
    46. Greiner A,
    47. Gurtowski J,
    48. Haun HL,
    49. He F,
    50. Jain R,
    51. Joachimiak MP,
    52. Keegan KP,
    53. Kondo S,
    54. Kumar V,
    55. Land ML,
    56. Meyer F,
    57. Mills M,
    58. Novichkov PS,
    59. Oh T,
    60. Olsen GJ,
    61. Olson R,
    62. Parrello B,
    63. Pasternak S,
    64. Pearson E,
    65. Poon SS,
    66. Price GA,
    67. Ramakrishnan S,
    68. Ranjan P,
    69. Ronald PC,
    70. Schatz MC,
    71. Seaver SMD,
    72. Shukla M,
    73. Sutormin RA,
    74. Syed MH,
    75. Thomason J,
    76. Tintle NL,
    77. Wang D,
    78. Xia F,
    79. Yoo H,
    80. Yoo S,
    81. Yu D
    . 2018. The United States Department of Energy systems biology knowledgebase (KBase). Nat Biotechnol 36:566–569. doi:10.1038/nbt.4163.
    OpenUrlCrossRef
  11. 11.↵
    1. Aziz RK,
    2. Bartels D,
    3. Best AA,
    4. DeJongh M,
    5. Disz T,
    6. Edwards RA,
    7. Formsma K,
    8. Gerdes S,
    9. Glass EM,
    10. Kubal M,
    11. Meyer F,
    12. Olsen GJ,
    13. Olson R,
    14. Osterman AL,
    15. Overbeek RA,
    16. McNeil LK,
    17. Paarmann D,
    18. Paczian T,
    19. Parrello B,
    20. Pusch GD,
    21. Reich C,
    22. Stevens R,
    23. Vassieva O,
    24. Vonstein V,
    25. Wilke A,
    26. Zagnitko O
    . 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. doi:10.1186/1471-2164-9-75.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Overbeek R,
    2. Olson R,
    3. Pusch GD,
    4. Olsen GJ,
    5. Davis JJ,
    6. Disz T,
    7. Edwards RA,
    8. Gerdes S,
    9. Parrello B,
    10. Shukla M,
    11. Vonstein V,
    12. Wattam AR,
    13. Xia F,
    14. Stevens R
    . 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. doi:10.1093/nar/gkt1226.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Wattam AR,
    2. Davis JJ,
    3. Assaf R,
    4. Boisvert S,
    5. Brettin T,
    6. Bun C,
    7. Conrad N,
    8. Dietrich EM,
    9. Disz T,
    10. Gabbard JL,
    11. Gerdes S,
    12. Henry CS,
    13. Kenyon RW,
    14. Machi D,
    15. Mao C,
    16. Nordberg EK,
    17. Olsen GJ,
    18. Murphy-Olson DE,
    19. Olson R,
    20. Overbeek R,
    21. Parrello B,
    22. Pusch GD,
    23. Shukla M,
    24. Vonstein V,
    25. Warren A,
    26. Xia F,
    27. Yoo H,
    28. Stevens RL
    . 2017. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542. doi:10.1093/nar/gkw1017.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Pruitt KD,
    2. Tatusova T,
    3. Brown GR,
    4. Maglott DR
    . 2012. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. doi:10.1093/nar/gkr1079.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Weber T,
    2. Blin K,
    3. Duddela S,
    4. Krug D,
    5. Kim HU,
    6. Bruccoleri R,
    7. Lee SY,
    8. Fischbach MA,
    9. Müller R,
    10. Wohlleben W,
    11. Breitling R,
    12. Takano E,
    13. Medema MH
    . 2015. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. doi:10.1093/nar/gkv437.
    OpenUrlCrossRefPubMed
View Abstract
PreviousNext
Back to top
Download PDF
Citation Tools
Genome Sequence of Lipopeptide- and Antioxidant-Producing Strain Bacillus velezensis NWUMFkBS10.5
Adetomiwa A. Adeniji, Olubukola O. Babalola
Microbiology Resource Announcements Jul 2019, 8 (28) e00595-19; DOI: 10.1128/MRA.00595-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print
Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Microbiology Resource Announcements article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Genome Sequence of Lipopeptide- and Antioxidant-Producing Strain Bacillus velezensis NWUMFkBS10.5
(Your Name) has forwarded a page to you from Microbiology Resource Announcements
(Your Name) thought you would be interested in this article in Microbiology Resource Announcements.
Share
Genome Sequence of Lipopeptide- and Antioxidant-Producing Strain Bacillus velezensis NWUMFkBS10.5
Adetomiwa A. Adeniji, Olubukola O. Babalola
Microbiology Resource Announcements Jul 2019, 8 (28) e00595-19; DOI: 10.1128/MRA.00595-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • ANNOUNCEMENT
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MRA
  • Editor in Chief
  • Board of Editors
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • Getting Started
  • Submit a Manuscript
  • Author Warranty
  • Ethics
  • Contact Us
  • ASM Author Center

Follow #MRAJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2576-098X