Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Microbiology Resource Announcements
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • Archive
  • Types of Resources
    • Amplicon Sequence Collections
    • Culture Collections/Mutant Libraries
    • Databases and Software
    • Omics Data Sets
    • Other Genetic Resources
    • Genome Sequences
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MRA
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Microbiology Resource Announcements
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Microbiology Resource Announcements
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • Archive
  • Types of Resources
    • Amplicon Sequence Collections
    • Culture Collections/Mutant Libraries
    • Databases and Software
    • Omics Data Sets
    • Other Genetic Resources
    • Genome Sequences
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MRA
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Genome Sequences

Genome Sequence of Oenococcus oeni UNQOe19, the First Fully Assembled Genome Sequence of a Patagonian Psychrotrophic Oenological Strain

Néstor G. Iglesias, Danay Valdés La Hens, Nair T. Olguin, Bárbara M. Bravo-Ferrada, Natalia S. Brizuela, E. Elizabeth Tymczyszyn, Horacio Bibiloni, Adriana C. Caballero, Lucrecia Delfederico, Liliana Semorile
J. Cameron Thrash, Editor
Néstor G. Iglesias
aLaboratorio de Ingeniería Genética y Biología Celular y Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Danay Valdés La Hens
cLaboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
dComisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-BA), La Plata, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nair T. Olguin
bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
cLaboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bárbara M. Bravo-Ferrada
bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
cLaboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalia S. Brizuela
bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
cLaboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Elizabeth Tymczyszyn
bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
cLaboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Horacio Bibiloni
eBodega Humberto Canale, General Roca, Río Negro, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adriana C. Caballero
fFacultad de Ciencia y Tecnología de los Alimentos, Universidad Nacional del Comahue and PROBIEN–CONICET, Neuquén, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lucrecia Delfederico
cLaboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liliana Semorile
cLaboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
dComisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-BA), La Plata, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Cameron Thrash
Louisiana State University
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MRA.00889-18
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Oenococcus oeni UNQOe19 is a native strain isolated from a Patagonian pinot noir wine undergoing spontaneous malolactic fermentation. Here, we present the 1.83-Mb genome sequence of O. oeni UNQOe19, the first fully assembled genome sequence of a psychrotrophic strain from an Argentinean wine.

ANNOUNCEMENT

Oenococcus oeni UNQOe19 is a native psychrotrophic strain isolated from a pinot noir wine undergoing spontaneous malolactic fermentation (MLF) at the oldest commercial winery in General Roca, North Patagonia, Argentina. Pinot noir grapes grow very well in the North Patagonian region due to the agroecological conditions there. In a previous work, we showed the prevalence of O. oeni and Lactobacillus plantarum strains in Patagonian wines undergoing spontaneous MLF, which suggests that both species are involved in leading the MLF process (1). In this work, we report the first fully assembled genome sequence of a psychrotrophic O. oeni strain, UNQOe19, which showed a good capacity for implantation in microvinification assays, driving the MLF at low incubation temperatures. This finding suggests its potential to be used as a malolactic starter culture at environmental temperatures below 15°C (2).

Strain UNQOe19 was grown in Leuconostoc oenos medium (MLO) (3) at 28°C for 7 days. To obtain DNA, 1 mg/ml of lysozyme with 1% sodium dodecyl sulfate was used. Proteins were removed with 0.1 µg/ml of proteinase K, followed by phenol-chloroform-isoamyl alcohol (25:24:1) extraction. A total of 16 µg of high-quality genomic DNA was required for library preparation and sequencing. A whole-genome shotgun library was constructed using a 20-kb SMRTbell version 1.0 template prep kit, followed by single-molecule real-time (SMRT) sequencing conducted on an RS II (Pacific Biosciences) sequencer. A total of 103,710 reads (588-fold coverage and a polymerase read N50 size of 14,765 bp), with an average length of 10,359 bp and an estimated accuracy of 85%, were used as input for de novo assembly with the Canu package (4). The Canu output consisted of a single circular contig without gaps; the chromosomal contig was 1,826,824 bp long with a 37.9% G+C content. Prediction and annotation of the coding sequences were conducted with GeneMarkS (5). Genome annotation was done using the NCBI Prokaryotic Genome Annotation Pipeline (6), and gene ontology relationships were estimated using Blast2GO version 5.1.1 (7). The Bacterial Pan-Genome Analysis (BPGA) pipeline (8) was used to compare the presence/absence of genes in strain UNQOe19 with other O. oeni strains. Out of 1,891 predicted genes, 1,721 were identified as protein-coding DNA sequences, 118 were potential pseudogenes, and 52 were RNA coding genes (43 tRNAs, 6 rRNAs, and 3 noncoding RNAs); these findings are comparable to those for other O. oeni strains (9–13).

Compared with the genome annotation of O. oeni strain PSU-1 (14), 160 unique genes in O. oeni UNQOe19 were detected. Among them, 19 genes were related to cellular components, 29 to metabolic processes, 23 to DNA molecular functions, 11 to plasmid and related conjugal transfer proteins, 13 to transmembrane transporter activities, 21 to putative phage-related proteins, and 38 to hypothetical proteins. Interestingly, the remaining six genes were related to homeostasis and oxidoreductase activity stress response, which is similar to earlier results described for other lactic acid bacterial species (15–17).

Further detailed evaluation will help elucidate the molecular basis of O. oeni strain UNQOe19’s potential as a malolactic starter culture and its ability to adapt to the stressful wine conditions, including low environmental temperatures, in the North Patagonian region.

Data availability.The whole-genome sequence of O. oeni strain UNQOe19 has been deposited at GenBank under the accession number CP027431.

ACKNOWLEDGMENTS

This work was funded by grants from the Universidad Nacional de Quilmes (Programa Microbiología Molecular Básica y Aplicada–Resolución [R] number 954/17), the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA; project PIT-AP-BA number 173/16), CIN–CONICET (PDTS CIN CONICET 2014 number 173), and ANPCyT (PICT 2014 number 1395, PICT 2016 number 3435).

D.V.L.H. and L.S. are members of the Research Career of CIC-BA, and N.G.I., N.T.O., B.M.B.-F., N.S.B., and E.E.T. are members of the Research Career of CONICET.

FOOTNOTES

    • Received 25 June 2018.
    • Accepted 13 July 2018.
    • Published 9 August 2018.
  • Copyright © 2018 Iglesias et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

REFERENCES

  1. 1.↵
    1. Valdés La Hens D,
    2. Bravo-Ferrada BM,
    3. Delfederico L,
    4. Caballero AC,
    5. Semorile LC
    . 2015. Prevalence of Lactobacillus plantarum and Oenococcus oeni during spontaneous malolactic fermentation in Patagonian red wines revealed by polymerase chain reaction-denaturing gradient gel electrophoresis with two targeted genes. Aust J Wine Grape Res 21:49–56. doi:10.1111/ajgw.12110.
    OpenUrlCrossRef
  2. 2.↵
    1. Manera C,
    2. Bravo-Ferrada BM,
    3. Tymczyszyn E,
    4. Delfederico L,
    5. Olguín N,
    6. Semorile LC,
    7. Valdés La Hens D
    . 2017. Aislamiento y selección de cepas psicrotolerantes de bacterias lácticas enológicas de la región patagónica. In IV Congreso Internacional Científico y Tecnológico–CONCyT 2017. http://digital.cic.gba.gob.ar/handle/11746/6684.
  3. 3.↵
    1. Maicas S,
    2. González-Cabo P,
    3. Ferrer S,
    4. Pardo I
    . 1999. Production of Oenococcus oeni biomass to induce malolactic fermentation in wine by control of pH and substrate addition. Biotechnol Lett 21:349–353. doi:10.1023/A:1005498925733.
    OpenUrlCrossRef
  4. 4.↵
    1. Koren S,
    2. Walenz BP,
    3. Berlin K,
    4. Miller JR,
    5. Bergman NH,
    6. Phillippy AM
    . 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. doi:10.1101/gr.215087.116.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Besemer J,
    2. Lomsadze A,
    3. Borodovsky M
    . 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618. doi:10.1093/nar/29.12.2607.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Tatusova T,
    2. DiCuccio M,
    3. Badretdin A,
    4. Chetvernin V,
    5. Nawrocki EP,
    6. Zaslavsky L,
    7. Lomsadze A,
    8. Pruitt KD,
    9. Borodovsky M,
    10. Ostell J
    . 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. doi:10.1093/nar/gkw569.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Conesa A,
    2. Götz S,
    3. García-Gómez JM,
    4. Terol J,
    5. Talón M,
    6. Robles M
    . 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Chaudhari NM,
    2. Gupta VK,
    3. Dutta C
    . 2016. BPGA—an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373. doi:10.1038/srep24373.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Lamontanara A,
    2. Orrù L,
    3. Cattivelli L,
    4. Russo P,
    5. Spano G,
    6. Capozzi V
    . 2014. Genome sequence of Oenococcus oeni OM27, the first fully assembled genome of a strain isolated from an Italian wine. Genome Announc 2(4):e00658-14. doi:10.1128/genomeA.00658-14.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Capozzi V,
    2. Russo P,
    3. Lamontanara A,
    4. Orrù L,
    5. Cattivelli L,
    6. Spano G
    . 2014. Genome sequences of five Oenococcus oeni strains isolated from Nero di Troia wine from the same terroir in Apulia, southern Italy. Genome Announc 2(5):e01077-14. doi:10.1128/genomeA.01077-14.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Mendoza LM,
    2. Saavedra L,
    3. Raya RR
    . 2015. Draft genome sequence of Oenococcus oeni strain X2L (CRL1947), isolated from red wine of northwest Argentina. Genome Announc 3(1):e01376-14. doi:10.1128/genomeA.01376-14.
    OpenUrlCrossRef
  12. 12.↵
    1. Jara C,
    2. Romero J
    . 2015. Genome sequences of three Oenococcus oeni strains isolated from Maipo Valley, Chile. Genome Announc 3(4):e00866-15. doi:10.1128/genomeA.00866-15.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Mills DA,
    2. Rawsthorne H,
    3. Parker C,
    4. Tamir D,
    5. Makarova K
    . 2005. Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Zhai Q,
    2. Xiao Y,
    3. Zhao J,
    4. Tian F,
    5. Zhang H,
    6. Narbad A,
    7. Chen W
    . 2017. Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Sci Rep 7:1182. doi:10.1038/s41598-017-01180-x.
    OpenUrlCrossRef
  15. 15.↵
    1. Tomita S,
    2. Lee I-C,
    3. van Swam II,
    4. Boeren S,
    5. Vervoort J,
    6. Bron PA,
    7. Kleerebezem M
    . 2016. Characterization of the transcriptional regulation of the tarIJKL locus involved in ribitol-containing wall teichoic acid biosynthesis in Lactobacillus plantarum. Microbiology 162:420–432. doi:10.1099/mic.0.000229.
    OpenUrlCrossRef
  16. 16.↵
    1. Ramos JL,
    2. Martínez-Bueno M,
    3. Molina-Henares AJ,
    4. Terán W,
    5. Watanabe K,
    6. Zhang X,
    7. Gallegos MT,
    8. Brennan R,
    9. Tobes R
    . 2005. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356. doi:10.1128/MMBR.69.2.326-356.2005.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Margalef-Català M,
    2. Araque I,
    3. Bordons A,
    4. Reguant C,
    5. Bautista-Gallego J
    . 2016. Transcriptomic and proteomic analysis of Oenococcus oeni adaptation to wine stress conditions. Front Microbiol 7:1554. doi:10.3389/fmicb.2016.01554.
    OpenUrlCrossRef
PreviousNext
Back to top
Download PDF
Citation Tools
Genome Sequence of Oenococcus oeni UNQOe19, the First Fully Assembled Genome Sequence of a Patagonian Psychrotrophic Oenological Strain
Néstor G. Iglesias, Danay Valdés La Hens, Nair T. Olguin, Bárbara M. Bravo-Ferrada, Natalia S. Brizuela, E. Elizabeth Tymczyszyn, Horacio Bibiloni, Adriana C. Caballero, Lucrecia Delfederico, Liliana Semorile
Microbiology Resource Announcements Aug 2018, 7 (5) e00889-18; DOI: 10.1128/MRA.00889-18

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print
Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Microbiology Resource Announcements article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Genome Sequence of Oenococcus oeni UNQOe19, the First Fully Assembled Genome Sequence of a Patagonian Psychrotrophic Oenological Strain
(Your Name) has forwarded a page to you from Microbiology Resource Announcements
(Your Name) thought you would be interested in this article in Microbiology Resource Announcements.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Genome Sequence of Oenococcus oeni UNQOe19, the First Fully Assembled Genome Sequence of a Patagonian Psychrotrophic Oenological Strain
Néstor G. Iglesias, Danay Valdés La Hens, Nair T. Olguin, Bárbara M. Bravo-Ferrada, Natalia S. Brizuela, E. Elizabeth Tymczyszyn, Horacio Bibiloni, Adriana C. Caballero, Lucrecia Delfederico, Liliana Semorile
Microbiology Resource Announcements Aug 2018, 7 (5) e00889-18; DOI: 10.1128/MRA.00889-18
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • ANNOUNCEMENT
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MRA
  • Editor in Chief
  • Board of Editors
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • Getting Started
  • Submit a Manuscript
  • Author Warranty
  • Ethics
  • Contact Us
  • ASM Author Center

Follow #MRAJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2576-098X