Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Microbiology Resource Announcements
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • Archive
  • Types of Resources
    • Amplicon Sequence Collections
    • Culture Collections/Mutant Libraries
    • Databases and Software
    • Omics Data Sets
    • Other Genetic Resources
    • Genome Sequences
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MRA
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Microbiology Resource Announcements
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Microbiology Resource Announcements
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • Archive
  • Types of Resources
    • Amplicon Sequence Collections
    • Culture Collections/Mutant Libraries
    • Databases and Software
    • Omics Data Sets
    • Other Genetic Resources
    • Genome Sequences
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MRA
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Prokaryotes

Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture

Diego Rivera, Santiago Revale, Romina Molina, José Gualpa, Mariana Puente, Guillermo Maroniche, Gastón Paris, David Baker, Bernardo Clavijo, Kirsten McLay, Stijn Spaepen, Alejandro Perticari, Martín Vazquez, Florence Wisniewski-Dyé, Chris Watkins, Francisco Martínez-Abarca, Jos Vanderleyden, Fabricio Cassán
Diego Rivera
aUniversidad Nacional de Río Cuarto (UNRC), Córdoba, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Santiago Revale
bInstituto de Agrobiotecnología Rosario (INDEAR), Rosario, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Romina Molina
aUniversidad Nacional de Río Cuarto (UNRC), Córdoba, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
José Gualpa
aUniversidad Nacional de Río Cuarto (UNRC), Córdoba, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mariana Puente
cInstituto de Microbiología y Zoología Agrícola, (IMYZA-INTA), Castelar, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guillermo Maroniche
cInstituto de Microbiología y Zoología Agrícola, (IMYZA-INTA), Castelar, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gastón Paris
dInstituto Leloir, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Baker
eThe Genome Analysis Centre (TGAC), Norwich, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bernardo Clavijo
eThe Genome Analysis Centre (TGAC), Norwich, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kirsten McLay
eThe Genome Analysis Centre (TGAC), Norwich, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stijn Spaepen
fKatholieke Universiteit Leuven, Leuven, Belgium
gMax Planck Institute for Plant Breeding Research, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alejandro Perticari
cInstituto de Microbiología y Zoología Agrícola, (IMYZA-INTA), Castelar, Buenos Aires, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martín Vazquez
bInstituto de Agrobiotecnología Rosario (INDEAR), Rosario, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Florence Wisniewski-Dyé
hEcologie Microbienne, Université Lyon, Villeurbanne, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris Watkins
eThe Genome Analysis Centre (TGAC), Norwich, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francisco Martínez-Abarca
iGrupo de Ecología Genética de la Rizósfera, Estación Experimental del Zaidín (CSIC), Granada, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jos Vanderleyden
fKatholieke Universiteit Leuven, Leuven, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fabricio Cassán
aUniversidad Nacional de Río Cuarto (UNRC), Córdoba, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/genomeA.00683-14
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We present the complete genome sequence of Azospirillum brasilense Az39, isolated from wheat roots in the central region of Argentina and used as inoculant in extensive and intensive agriculture during the last four decades. The genome consists of 7.39 Mb, distributed in six replicons: one chromosome, three chromids, and two plasmids.

GENOME ANNOUNCEMENT

Azospirillum sp. is one of the best-studied plant-growth-promoting rhizobacteria at present. Members of this genus colonize more than 100 plant species and significantly improve their growth and productivity under field conditions (1). One of the main characteristics of Azospirillum sp. proposed to explain plant growth promotion has been related to its ability to produce plant growth regulators as auxins, cytokinins, gibberellins, ethylene, abscisic acid, nitric oxide, and polyamines (2–8). Azospirillum brasilense Az39 was isolated in 1982 from surface-sterilized wheat seedlings in Marcos Juarez, Argentina, and selected for inoculant formulation based on its ability to increase crop yields of maize and wheat under agronomic conditions (9). The potential mechanisms responsible for growth promotion in strain Az39 have been partially unraveled (10–13).

The genome sequence was obtained using a combined whole-genome shotgun and 8-kb paired-end strategy with a 454 GS FLX Titanium pyrosequencer at INDEAR (Argentina), resulting in a 21-fold genome coverage. Sequencing reads were de novo assembled (Newbler v 2.8), resulting in 6 scaffolds (>160 kbp each; N50, 1,908,534 bp). The closure of the gap intra- and interscaffolds was achieved by detailed observation of relevant sequencing reads using the Geneious R7 software platform (14). Optical mapping analysis was performed with an OpGen Argus optical mapper at TGAC (United Kingdom) to validate the final assembly. In agreement with the bioinformatic data, pulsed-field gel electrophoresis (PFGE) analysis of total DNA revealed the presence of six replicons in A. brasilense Az39, defined as one chromosome, three chromids, and two plasmids. The presence of six to seven replicons is a common feature of Azospirillum genomes (15–17). Replicon sizes and their G+C contents were 3,064,393 bp (68.4%) for the chromosome; 1,901,707 bp (68.4%), 933,960 bp (68.6%), and 641,573 bp (69.2%) for the chromids (AbAZ39_p1, AbAZ39_p2, and AbAZ39_p4); and 686,487 bp (69.5%) and 163,159 bp (65.6%) for the plasmids (AbAZ39_p3 and AbAZ39_p5).

Genome annotation was done using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) (18). The complete genome consists of 6,311 protein-coding sequences (2,763 on the chromosome, 1,605 on AbAZ39_p1, 744 on AbAZ39_p2, 534 on AbAZ39_p3, 557 on AbAZ39_p4, and 108 on AbAZ39_p5). Similarly to other species of the Azospirillum genera, Az39 contains multiple ribosomal operons at different replicons (15–17). Eight rRNA operons are complete and one lacks the 5S rRNA subunit. Complete operons are distributed with two in the chromosome, four in AbAZ39_p1, and two in AbAZ39_p4, while the incomplete one is located on the chromid AbAZ39_p2. Eighty-seven tRNA loci (distributed 44 on the chromosome, 42 on the chromids, and 1 on the plasmids) were identified. The putative genes involved in plant growth promotion mechanisms of Az39 were determined by the use of the RAST annotation server (19) and KAAS (20).

The A. brasilense Az39 genome contains genes related to nitrogen fixation; phytohormones and plant growth regulators biosynthesis; biofilms formation and type I, II, and VI secretion systems. The genome sequence of Az39 provides a genomic basis for in-depth comparative genome analyses, to elucidate the specific mechanisms of Azospirillum-plant interactions.

Nucleotide sequence accession numbers.The complete genome sequence of Azospirillum brasilense Az39 is available at NCBI GenBank under the accession numbers CP007793 for the chromosome and CP007794 to CP007798 for the other replicons.

ACKNOWLEDGMENTS

This work was supported by the Consejo Nacional de Investigación Científico-Tecnológica from Argentina (CONICET), the Fondo Nacional para la Investigación Científico Tecnológica (FONCyT), the Ministerio de Ciencia y Tecnología de la República Argentina (MINCyT) and MINCyT-FWO Cooperation Program, and the Spanish Ministerio de Ciencia e Innovación in the Programme Consolider-Ingenio (CSD2009-0006), including the ERDF (European Regional Development Funds) and the Biotechnology and Biosciences Research Council (BBSRC). D.R. and R.M. are recipients of a doctoral fellowship grant from CONICET, J.G. is a recipient of a doctoral fellowship grant from FOMCyT, and S.S. is a recipient of a postdoctoral fellowship grant from Research Foundation Flanders.

FOOTNOTES

    • Received 17 June 2014.
    • Accepted 23 June 2014.
    • Published 24 July 2014.
  • Copyright © 2014 Rivera et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

REFERENCES

  1. 1.↵
    1. Bashan Y,
    2. de-Bashan L
    . 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Advances Agron. 108:77–136. doi:10.1016/S0065-2113(10)08002-8.
    OpenUrlCrossRefWeb of Science
  2. 2.↵
    1. Prinsen E,
    2. Costacurta A,
    3. Michiels K,
    4. Vanderleyden J,
    5. Van Onckelen H
    . 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant. Microb. Interact. 6:609–615.
    OpenUrlCrossRefWeb of Science
  3. 3.↵
    1. Tien TM,
    2. Gaskins MH,
    3. Hubbell DH
    . 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L). Appl. Environ. Microbiol. 37:1016–1024.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Bottini R,
    2. Fulchieri M,
    3. Pearce D,
    4. Pharis RP
    . 1989. Identification of gibberellins A1, A3, and Iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 90:45–47. doi:10.1104/pp.90.1.45.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Strzelczyk E,
    2. Kamper M,
    3. Li C
    . 1994. Cytocinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol. Res. 149:55–60. doi:10.1016/S0944-5013(11)80136-9.
    OpenUrlCrossRef
  6. 6.↵
    1. Cohen A,
    2. Bottini R,
    3. Piccoli P
    . 2008. Azospirillum brasilense sp. 245 produces ABA in chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul. 54:97–103. doi:10.1007/s10725-007-9232-9.
    OpenUrlCrossRefWeb of Science
  7. 7.↵
    1. Creus CM,
    2. Graziano M,
    3. Casanovas EM,
    4. Pereyra MA,
    5. Simontacchi M,
    6. Puntarulo S,
    7. Barassi CA,
    8. Lamattina L
    . 2005. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303. doi:10.1007/s00425-005-1523-7.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Cassán F,
    2. Maiale S,
    3. Masciarelli O,
    4. Vidal A,
    5. Luna V,
    6. Ruiz O
    . 2009. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur. J. Soil Biol. 45:12–19. doi:10.1016/j.ejsobi.2008.08.003.
    OpenUrlCrossRefWeb of Science
  9. 9.↵
    1. Díaz-Zorita M,
    2. Fernández Canigia M
    . 2009. Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur. J. Soil Biol. 45:3–11. doi:10.1016/j.ejsobi.2008.07.001.
    OpenUrlCrossRefWeb of Science
  10. 10.↵
    1. Perrig D,
    2. Boiero L,
    3. Masciarelli OA,
    4. Penna C,
    5. Ruiz OA,
    6. Cassán FD,
    7. Luna MV
    . 2007. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Appl. Microbiol. Biotechnol. 75:1143–1150. doi:10.1007/s00253-007-0909-9.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Cassán F,
    2. Perrig D,
    3. Sgroy V,
    4. Masciarelli O,
    5. Penna C,
    6. Luna V
    . 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E 109 promote seed germination and early seedling growth, independently or co-inoculated in maize (Zea mays L.) and soybean (Glycine max L.). Eur. J. Soil Biol. 45:28–35. doi:10.1016/j.ejsobi.2008.08.005.
    OpenUrlCrossRef
  12. 12.↵
    1. Cassán F,
    2. Spaepen S,
    3. Vanderleyden J
    . 2010. Abstract. Indole-3-acetic acid biosynthesis by Azospirillum brasilense Az39 and its regulation under biotic and abiotic stress conditions, p 85. 20th International Conference on Plant Growth Substances.
  13. 13.↵
    1. Rodríguez Cáceres E,
    2. Di Ciocco A,
    3. César A,
    4. Carletti S
    . 2008. 25 Editorial. Años de investigación de Azospirillum brasilense Az39 en Argentina, p 179–188. In Cassán F, Salamone I (ed), Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, Argentina.
  14. 14.↵
    1. Kearse M,
    2. Moir R,
    3. Wilson A,
    4. Stones-Havas S,
    5. Cheung M,
    6. Sturrock S,
    7. Buxton S,
    8. Cooper A,
    9. Markowitz S,
    10. Duran C,
    11. Thierer T,
    12. Ashton B,
    13. Meintjes P,
    14. Drummond A
    . 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Martin-Didonet CC,
    2. Chubatsu LS,
    3. Souza EM,
    4. Kleina M,
    5. Rego FG,
    6. Rigo LU,
    7. Yates MG,
    8. Pedrosa FO
    . 2000. Genome structure of the genus Azospirillum. J. Bacteriol. 182:4113–4116. doi:10.1128/JB.182.14.4113-4116.2000.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Wisniewski-Dyé F,
    2. Borziak K,
    3. Khalsa-Moyers G,
    4. Alexandre G,
    5. Sukharnikov LO,
    6. Wuichet K,
    7. Husrt GB,
    8. McDonald WH,
    9. Robertson JS,
    10. Barbe V,
    11. Calteau A,
    12. Rouy Z,
    13. Mangenot S,
    14. Prigent-Combaret C,
    15. Normand P,
    16. Boyer M,
    17. Siguier P,
    18. Dessaux Y,
    19. Elmerich C,
    20. Condemine G,
    21. Krishnen G,
    22. Kennedy I,
    23. Paterson AH,
    24. González V,
    25. Mavingui P,
    26. Zhulin IB
    . 2011. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLOS Genet. 7 e1002430. doi:10.1371/journal.pgen.1002430.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Wisniewski-Dyé F,
    2. Lozano L,
    3. Acosta-Cruz E,
    4. Borland S,
    5. Drogue B,
    6. Prigent-Combaret C,
    7. Rouy Z,
    8. Barbe V,
    9. Mendoza Herrera AM,
    10. González V,
    11. Mavingui P
    . 2012. Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes (Basel) 3:576–602. doi:10.3390/genes3040576.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Angiuoli SV,
    2. Gussman A,
    3. Klimke W,
    4. Cochrane G,
    5. Field D,
    6. Garrity G,
    7. Kodira CD,
    8. Kyrpides N,
    9. Madupu R,
    10. Markowitz V,
    11. Tatusova T,
    12. Thomson N,
    13. White O
    . 2008. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. Omics 12:137–141. doi:10.1089/omi.2008.0017.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Aziz RK,
    2. Bartels D,
    3. Best AA,
    4. DeJongh M,
    5. Disz T,
    6. Edwards RA,
    7. Formsma K,
    8. Gerdes S,
    9. Glass EM,
    10. Kubal M,
    11. Meyer F,
    12. Olsen GJ,
    13. Olson R,
    14. Osterman AL,
    15. Overbeek RA,
    16. McNeil LK,
    17. Paarmann D,
    18. Paczian T,
    19. Parrello B,
    20. Pusch GD,
    21. Reich C,
    22. Stevens R,
    23. Vassieva O,
    24. Vonstein V,
    25. Wilke A,
    26. Zagnitko O
    . 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi:10.1186/1471-2164-9-75.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Moriya Y,
    2. Itoh M,
    3. Okuda S,
    4. Yoshizawa AC,
    5. Kanehisa M
    . 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35:W182–W185. doi:10.1093/nar/gkm321.
    OpenUrlCrossRefPubMedWeb of Science
View Abstract
PreviousNext
Back to top
Download PDF
Citation Tools
Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture
Diego Rivera, Santiago Revale, Romina Molina, José Gualpa, Mariana Puente, Guillermo Maroniche, Gastón Paris, David Baker, Bernardo Clavijo, Kirsten McLay, Stijn Spaepen, Alejandro Perticari, Martín Vazquez, Florence Wisniewski-Dyé, Chris Watkins, Francisco Martínez-Abarca, Jos Vanderleyden, Fabricio Cassán
Genome Announcements Jul 2014, 2 (4) e00683-14; DOI: 10.1128/genomeA.00683-14

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print
Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Microbiology Resource Announcements article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture
(Your Name) has forwarded a page to you from Microbiology Resource Announcements
(Your Name) thought you would be interested in this article in Microbiology Resource Announcements.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture
Diego Rivera, Santiago Revale, Romina Molina, José Gualpa, Mariana Puente, Guillermo Maroniche, Gastón Paris, David Baker, Bernardo Clavijo, Kirsten McLay, Stijn Spaepen, Alejandro Perticari, Martín Vazquez, Florence Wisniewski-Dyé, Chris Watkins, Francisco Martínez-Abarca, Jos Vanderleyden, Fabricio Cassán
Genome Announcements Jul 2014, 2 (4) e00683-14; DOI: 10.1128/genomeA.00683-14
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • GENOME ANNOUNCEMENT
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MRA
  • Editor in Chief
  • Board of Editors
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • Getting Started
  • Submit a Manuscript
  • Author Warranty
  • Ethics
  • Contact Us
  • ASM Author Center

Follow #MRAJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2576-098X